大家都知道陶瓷电路板的导热性和稳定性非常好,在大功率LED、传感器等方面被受应用和关注。那么陶瓷电路板分类是怎样的,你知道知晓吗?今天金瑞欣特种电路小编为您分享:

一, 从层数方面来看陶瓷电路板

陶瓷基板散热性能很好,但是往往也是非常小的电路板。目前陶瓷电路板以

单双面板为主,虽然现在很多研究院和高校都设计多层的陶瓷电路板,但是多层陶瓷基板厂家往往由于工艺的首先没有能生产负荷性能的多层陶瓷pcb。

二, 按原来来分陶瓷电路板的种类

三氧化二铝陶瓷

氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相

对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。

AIN陶瓷

AIN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AIN基板。目前AIN生产技术国内相对比较少,相对于Al2O3,AIN价格相对偏高许多,这个也是制约其发展的小瓶颈。不过随着经济的提升,技术的升级,这种瓶颈终会消失

BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展.

三, 按照制造工艺来分

目前陶瓷基板的工艺大致可以分来HTCC、LTCC、DBC、DPC四种,而

DBC与DPC则为国内近几年才开发成熟,且能量产化的专业技术,DBC是利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接镀铜技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高。

1,DBC (Direct Bonded Copper)

直接敷铜技术是利用铜的含氧共晶液直接将铜敷接在陶瓷上,其基本原理就是敷接过程前或过程中在铜与陶瓷之间引入适量的氧元素,在1065℃~1083℃范围内,铜与氧形成Cu-O共晶液, DBC技术利用该共晶液一方面与陶瓷基板发生化学反应生成 CuAlO2或CuAl2O4相,另一方面浸润铜箔实现陶瓷基板与铜板的结合。

2,DPC (Direct Plate Copper)

DPC亦称为直接镀铜基板, DPC基板工艺为例:首先将陶瓷基板做前处理清洁,利用薄膜专业制造技术-真空镀膜方式于陶瓷基板上溅镀结合于铜金属复合层,接着以黄光微影之光阻被复曝光、显影、蚀刻、去膜工艺完成线路制作,最后再以电镀/化学镀沉积方式增加线路的厚度,待光阻移除后即完成金属化线路制作。

3,LTCC (Low-Temperature Co-fired Ceramic)

LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与约30%~50%的玻璃材料加上有机黏结剂,使其混合均匀成为泥状的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900℃的烧结炉中烧结成型,即可完成。

4,HTCC (High-Temperature Co-fired Ceramic)

HTCC又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC的陶瓷粉末并无加入玻璃材质,因此,HTCC的必须再高温1300~1600℃环境下干燥硬化成生胚,接着同样钻上导通孔,以网版印刷技术填孔与印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰…等金属,最后再叠层烧结成型。

目前DPC、DBC、LTCC、HTCC等陶瓷基板已经成熟应用到各个需要的领域,在制冷片、高功率LED等行业使用,更多陶瓷电路板打样的相关问题可以咨询金瑞欣特种电路。